
Integrability criterion for lowering of ionization potentials and formulation of the solution of the
inverse problem of constructing consistent thermodynamic functions of nonideal plasmas

Mofreh R. Zaghloul
Department of Physics, College of Sciences, United Arab Emirates University, P.O. Box 17551, Al-Ain, United Arab Emirates

and Department of Physics and Engineering Mathematics, College of Engineering, Zagazig University, Zagazig, Egypt
�Received 14 October 2008; published 26 January 2009�

Within the chemical picture, it is shown that self-consistent Coulomb nonideality corrections that satisfy
Maxwell’s thermodynamic identities can be constructed from formulas for lowering of ionization potentials,
obtained from plasma electrostatic microfields or derived in ad hoc or empirical fashion, provided that a
necessary integrability criterion is satisfied. The solution of such an inverse problem is formulated and intro-
duced in terms of a simple integral that gives the correction to Helmholtz free energy function. The required
integrability criterion is derived and applied to investigate the thermodynamic consistency of some models in
the literature. Maintaining the same functional dependence on species densities as in the original models, a
routine to fix thermodynamic inconsistencies found in some of these models is introduced. The advantages and
usefulness of such a reverse scheme are discussed.
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I. INTRODUCTION

The use of precise and consistent equations of state and
transport, and optical and thermodynamic properties is of
utmost importance in the construction of stellar atmosphere
and interior models. Accurate evaluation of these properties
is also crucial in many applications involving high energy
density plasmas such as controlled nuclear fusions, modern
electrothermal launch technologies, and interaction of lasers
and shock waves with matter. As it is commonly known, the
quantitative investigation of these properties necessitates an
accurate description of the plasma composition and species
densities.

Within the chemical picture, the customary approach to
the determination of species densities �ionized and excited�,
equation-of-state, and thermodynamic functions of plasma
systems involves the construction and minimization of the
Helmholtz free energy function �1–3�. Electrostatic interac-
tions among charged particles and other possible coupling
mechanisms are usually incorporated in a correction term,
the so-called excess free energy �Fint, to be added to the
ideal free energy function. This approach has the great ad-
vantage that the free energy minimization technique auto-
matically generates thermodynamically consistent properties.
Free energy minimization can also lead to a system of mini-
mization equations having the form of the well-known Saha
equation with lowered ionization energies �4–7�. The lower-
ing of ionization energy for a �-fold ion in the plasma system
can be written as

�I� = − � �

�Ne
−

�

�N�

+
�

�N�+1
��Fint, �1�

where Ne, N�, and N�+1 are, respectively, the numbers of free
electrons, �-fold, and ��+1�-fold ionized species. It is worth
noting that the lowering of ionization potentials given by Eq.
�1� is the thermodynamic or composition lowering of ioniza-
tion potentials to be incorporated in the generalized Saha
equations �4�. This is different from the spectroscopic con-
tinuum lowering, that is, dissolution of emission or absorp-

tion lines. This latter is due to the microfields and related
random shifts of energy levels, which occur for involved
quantum states at much lower density than the true pressure
ionization �8–11�.

Considering the constraints of electroneutrality and con-
servation of nuclei, one can determine the detailed plasma
composition either by optimization algorithms of the free
energy function or by solving the set of coupled nonideal and
nonlinear Saha equations �6,7�. Based on different physical
arguments, different models for the excess free energy �Fint

are derived and used in the literature �see, for example,
�1–3��. Generally, �Fint can be expressed as the sum of a
Coulomb part, �FCoub, that describes electric interaction of
the charged particles and a non-Coulomb part, �Fnon-Coub,
which describes the interactions of neutral species with neu-
tral and charged particles in the system; that is, ��Fint

=�FCoub+�Fnon-Coub�.
An alternative approach to the determination of the

plasma composition is based on the fact that in a nonideal
plasma environment, the ionization energy is lowered due to
the presence of the electrostatic microfields superimposed on
the Coulomb electric field of an atomic nucleus. Hence one
can derive this lowering of ionization energies from these
electrostatic microfields �4,12–15� or even in an ad hoc or
empirical fashion. Upon incorporating these lowering of ion-
ization energies, the resulting corrected Saha equations can
be used in conjunction with the aforementioned constraints
to determine the detailed plasma composition. An important
criticism to the latter approach was raised by Sweeney �16�
who pointed out that the incorporation of the lowering of
ionization potentials �pressure ionization term� in the Saha
equation violates Maxwell’s thermodynamic identities if cor-
responding changes are not made to the expressions for other
thermodynamic functions. Negative values of the adiabatic
gradient in the degenerate dwarf models of Böhm �17� and
Straka �18� were explained in terms of this thermodynamic
inconsistency.

It has to be noted that Sweeney did not provide the solu-
tion for how to reform thermodynamic functions in compli-
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ance with the corrected Saha equation in order to satisfy
Maxwell’s identities and the abstraction of the solution of
this inverse problem is still unknown. It may also be useful
to emphasize here that an inconsistent set of thermodynamic
functions is not the sole reason for obtaining negative values
of the adiabatic gradient. It is also possible to obtain such
negative values of the adiabatic gradient from a consistent
set of thermodynamic functions if the model used is inaccu-
rate or used out of its range of applicability. In these cases,
nonphysical properties such as negative pressure may also be
obtained.

The objective of this work is to show how to solve the
backward problem, to set the approach to clear Sweeney’s
concern, and to point out the necessary conditions required
for a reachable solution with application to some models in
the literature.

II. INTEGRABILITY CONDITION AND THE BACKWARD
SCHEME FOR THE DERIVATION OF CONSISTENT

THERMODYNAMIC FUNCTIONS

Starting from Eq. �1�, which gives the relation between
the depression of ionization potentials and the excess free
energy, and rearranging the terms, one can obtain a recur-
rence relation in the form

��Fint

�N�

=
��Fint

�N�−1
− �I�−1 −

��Fint

�Ne
, � = 1,2, . . . ,�max,

�2�

where �max is the maximum possible ionization state of the
atoms or ions under consideration. Restricting our discussion
here to the Coulomb part of the excess free energy �function
of charged particles’ densities�, successive use of the recur-
rence relation �2� leads to

��FCoub

�N�

= − �
m=1

�

�Im−1 − �
��FCoub

�Ne
, � = 1,2, . . . ,�max.

�3�

In addition, the constraint of electroneutrality can be used to
express the differential of the excess Coulomb free energy as

d�FCoub = �
�=1

�max � ��FCoub

�N�

+ �
��FCoub

�Ne
�dN�. �4�

Upon substitution from Eq. �3� into Eq. �4�, one gets

d�FCoub = − �
�=1

�max ��
m=1

�

�Im−1�dN�. �5�

Equation �5� indicates that �FCoub is effectively a function of
the ions’ densities with

��FCoub

�N�

= − �
m=1

�

�Im−1. �6�

In view of the fact that �FCoub must be a single-valued func-
tion of the equilibrium state of the assembly, d�FCoub must

be a complete, exact, differential, which requires the models
of lowering of ionization energies to satisfy the following
integrability or self-consistency condition:

��− �
m=1

�

�Im−1�
�Nz

=

��− �
m=1

z

�Im−1�
�N�

,

z � �, z = 1,2, . . . ,�max, and � = 1,2, . . . ,�max. �7�

If the condition �7� is satisfied, one can integrate Eq. �5� to
obtain the excess Coulomb free energy �FCoub. During the
integration of equations such as Eq. �5�, it is convenient to
increase the densities of all ions in the same ratio �19�. De-
noting by � the fraction of the final densities, which the ions
have at any stage of integration, we then have

�FCoub = − NH �
�=1

�max

���
0

1

�
m=1

�

�Im−1���d� , �8�

where NH is the total number of heavy particles and �r
=Nr /NH. Equation �8� can even be integrated numerically for
cases in which analytical integration of ��m=1

� �Im−1���� is
not easily obtainable.

At this stage one can derive the Coulomb excess free
energy from Eq. �8� and use it to derive the corrections to
different thermodynamic properties. The derivation of Cou-
lomb nonideality corrections to different thermodynamic
functions from �FCoub �as given by Eq. �8�� assures thermo-
dynamic consistency among the calculated species densities
and thermodynamic properties. It has to be noted that al-
though the integration in Eq. �8� can be evaluated analyti-
cally for some cases giving rise to exact closed-form expres-
sions for the corrections to thermodynamic functions, in
several other cases numerical evaluation of Eq. �8� may be-
come unavoidable. In all cases, the corrections to thermody-
namic functions can be derived from the standard thermody-
namic relations and they depend on the derivatives of the
excess free energy with respect to the independent state vari-
ables, namely, volume V and temperature T.

III. VALUE OF THE SOLUTION OF THE INVERSE
PROBLEM

Given the depression of ionization energies, the detailed
composition of a nonideal plasma can be easily determined
by solving the set of nonideal Saha equations subjected to
the constraints of electroneutrality and conservation of nu-
clei. This allows investigating and clearing difficulties typi-
cally encountered in the well-known ionization models �20�
with relative simplicity. Moreover, the ease of determining
the detailed population densities of a nonideal plasma en-
ables the calculation of the transport properties of such non-
ideal plasma systems without any prior knowledge of the
free energy function. In principle, this is quite valuable as the
transport properties of nonideal plasmas are easily and accu-
rately measurable, in contrast with the set of thermodynamic
properties, and this provides a reliable means of judging the
accuracy of modeling the nonideal effects.
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IV. INCONSISTENCIES IN SOME MODELS IN THE
LITERATURE AND A RECOMMENDED ROUTINE

TO RECOVER CONSISTENCY

Apart from their level of accuracy, most of the ad hoc
formulas for depression of ionization energies, in addition to
those derived from the plasma electrostatic microfield, suffer
from inherent thermodynamic inconsistencies, which can be
easily recognized by applying the criterion in Eq. �7�. It is
noteworthy that Potekhin �15� indicated that the occupation
probabilities based on the plasma microfield distribution are
in fact the optical or spectroscopic ones, and that their im-
plication in thermodynamics leads to physically unrealistic
equations of state.

Roughly speaking, the lowering of ionization energy of
the mth ion can be expressed in many cases in the form

�Im−1 = �
i

Cif i�m�gi�Nr�s� , �9�

where Ci is a constant, f i�m� is a weighting function of the
ion state m, and gi�Nr�s� is a function of the population den-
sities of plasma species. The term �−�m=1

� �Im−1� found in Eq.
�7� can therefore be written as

�− �
m=1

�

�Im−1� = − �
i

Cigi�Nr�s��
m=1

�

f i�m� , �10�

with the result that the symmetry or consistency condition
�7� implies that

�gi�Nr�s�

�Nz
= c��Nr�s��

m=1

z

f i�m� . �11�

Changing the form of the weighting function f i�m� to satisfy
the requirement �11� fixes the inconsistencies in different for-
mulas of lowering of ionization energies found in the litera-
ture. Equation �11� simply indicates that f i�m� is not inde-
pendent from gi�Nr�s�. In the following illustrative examples,
we investigate and show the inconsistency of some models in
the literature and provide optional reforms to recover ther-
modynamic consistencies as guided by Eq. �11�. It has to be
remembered that these optional reforms aim only at fixing
the inconsistencies in these models with no claim regarding
improving accuracy, even if the latter comes sometimes as a
by-product of these reforms.

A. Unsöld’s model

Unsöld �12� considered the influence of the next-
neighbor’s microfield on the potential distribution in the en-
vironment of the test nucleus and derived the following ex-
pression for the lowering of ionization energies:

�Im−1 = C�m�2/3

f�m�

�ne�1/3

g�Nr�s�

, m = 1,2, . . . ,�max,

�12�

where ne=Ne /V= ��r=1
�maxrNr� /V is the number density of free

electrons and the constant C is given in the SI system of
units by C=1.1136�10−27 J m.

It is straightforward to show the inconsistency of Unsöld’s
formula by applying the criterion in Eq. �7�. To fix such an

inconsistency while keeping the same functional dependence
on the population densities, one needs to change f�m� to
satisfy Eq. �11�. The left-hand side of Eq. �11� gives
�1 /3V1/3�zNe

−2/3, which means that z=�m=1
z f�m� or, equiva-

lently, that f�m� must be unity instead of m2/3 in the original
model. This can be confirmed and also replicated using the
above result, namely, z=�m=1

z f�m�, and substituting into Eq.
�8� to find the excess free energy as follows:

�FCoub = − CNHne
1/3 �

�=1

�max

����
0

1

�1/3d� = −
3

4
CVne

4/3.

�13�

Now, one can proceed using Eq. �1� to find the lowering of
ionization energies as follows:

�I� = Cne
1/3, �14�

which gives the same lowering of ionization energy for all
ions as shown above. This finding is different from the origi-
nal Unsöld’s model in which the lowering of ionization en-
ergies to different ionization states is weighted by the ioniza-
tion state of the ion to the power 2 /3. For completeness, we
give here the Coulomb corrections to pressure and internal
energy derived from �FCoub in Eq. �13� and standard ther-
modynamic relations.

�PCoub = −
1

4
Cne

4/3, �15�

and

�UCoub

V
= −

3

4
Cne

4/3. �16�

We are not aware of expressions available in the literature for
�FCoub, �PCoub, and �UCoub in the original Unsöld’s model
in order to carry out a quantitative comparison with the ex-
pressions in Eqs. �13�, �15�, and �16�.

B. Anisimov-Petrov

Anisimov and Petrov �15� obtained analytical expressions
for the ionization potentials of neutral atoms and ions in the
screened Coulomb potential of a nonideal plasma. According
to the Anisimov and Petrov model and using the same nota-
tion as in �15�, the lowering of ionization potential of an
electron in the �n , l� state is expressed �in atomic units� as

�In,l = �In,l
0 − In,l� = f1�n,l�

1

�D
− f2�n,l�

1

�D
2 + f3�n,l�

1

�D
3 ,

�17�

where

f1�n,l� =
1
	2

�n −
l

n
�l − 1� + l�	In,l

0 , �18�

f2�n,l� =
1

2

1

n2
�n2 − l�l − 1�
2

�2

+ nl�n2 − l�l − 1��� ,

�19�

INTEGRABILITY CRITERION FOR LOWERING OF … PHYSICAL REVIEW E 79, 016410 �2009�

016410-3



f3�n,l� =
1

8	2

l

n2 �n2 − l�l − 1��2	 1

In,l
0 , �20�

and

�D =	 TV

4��r=1
�maxr�1 + r�Nr

. �21�

For a specific chemical element, the ionization state �m−1�
of an ion determines the number of bound electrons and the
quantum numbers �n , l� for the outermost electron. Accord-
ingly, one can write

�In,l = �Im−1 = C1f1�m�
1

�D

g1�Nr�s�

− C2f2�m�
1

�D
2

g2�Nr�s�

+ C3f3�m�
1

�D
3

g3�Nr�s�

,

�22�

where C1, C2, and C3 are numerical dimensionless constants.
The functions f1�m�, f2�m�, and f3�m� may not be continu-
ous; in most cases, they are piecewise continuous or tabu-
lated functions.

Now, applying the self-consistency criterion Eq. �7� to the
lowering of ionization energies given above, one gets

�

�Nz
�− �

m=1

�

�Im−1� = 
− �
n.l�m=1

�

f1�n,l�� ��D
−1

�Nz
− 
− �

n.l�m=1

�

f2�n,l�� ��D
−2

�Nz
+ 
− �

n.l�m=1

�

f3�n,l�� ��D
−3

�Nz

= 
− �
n.l�m=1

�

f1�n,l��z�1 + z�
2�

TV
�D − 
− �

n.l�m=1

�

f2�n,l��z�1 + z�
4�

TV
+ 
− �

n.l�m=1

�

f3�n,l��z�1 + z��6�

TV
��D

−1.

�23�

The fact that the factor ��1+�� cannot be factored out from
each of the terms in the square brackets means that the ex-
pression is not symmetric in both z and �, and accordingly, it
does not satisfy the integrability criterion. In order to fix this
inconsistency, one can follow the same procedure as above
where we assign

�
m=1

�

f1�m� = ��� + 1� ,

�
m=1

�

f2�m� = ��� + 1� ,

�
m=1

�

f2�m� = ��� + 1� , �24�

which gives

f1�m� = 2m, m = 1,2, . . . . ,� ,

f2�m� = 2m, m = 1,2, . . . . ,� ,

f3�m� = 2m, m = 1,2, . . . . ,� , �25�

with the result that

�Im−1 = 2C1m
1

�D
− 2C2m

1

�D
2 + 2C3m

1

�D
3 . �26�

Following the same routine as above, one can substitute
� m=1

i=1,2,3

z
f i�m�=z�1+z� into Eq. �8� and perform the integra-

tion to get the free energy function as follows:

�FCoub = − NH �
�=1

�max

���
0

1

�
m=1

�

�Im−1���d� = − NH
3/2C1 �

�=1

�max

��
 ��1 + ��	4�

	TV
��

r=1

�max

r�1 + r��r�1/2��
0

1

�1/2d�

+ NH
2 C2 �

�=1

�max

�	
 ��1 + ��4�

TV
��

r=1

�max

r�1 + r��r���
0

11

�d� − NH
5/2C3 �

�=1

�max

�	

�
 ��1 + ���4��3/2

�TV�3/2 ��
r=1

�max

r�1 + r��r�3/2��
0

11

�3/2d� = −
C1TV

6��D
3 +

C2TV

8��D
4 −

C3TV

10��D
5 , �27�
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which gives, according to Eq. �1�, the following expression
for the depression of ionization energies:

�Im−1 = 2C1m
1

�D
− 2C2m

1

�D
2 + 2C3m

1

�D
3 . �28�

Equation �28� is in complete agreement with our previous
findings in Eq. �26�. It is interesting to note that the above
expressions �27� and �28� reduce to Debye-like formulas at
weak nonideality where �D is large. In fact, the equations
reduce exactly to the Debye model at weak nonideality for
�l=0� if the effective charge Z* in �15� is taken to be equal to
the ionic charge.

V. CONCLUSIONS

It has been shown that self-consistent Coulomb nonideal-
ity corrections that satisfy Maxwell’s thermodynamic identi-
ties can be constructed from formulas of lowering of ioniza-
tion potentials derived in an ad hoc fashion or from plasma
electrostatic microfields provided that a necessary consis-
tency criterion is satisfied. The criterion of self-consistency

of formulas of lowering of ionization potentials, the integra-
bility condition, is derived and applied to illustratively inves-
tigate the consistency of a set of models in the literature.
Maintaining the same dependence on the population densi-
ties as in the original models, a routine to fix inconsistencies
of such models is introduced. An “inverse method” for de-
riving a consistent set of Coulomb corrections to thermody-
namic functions is also introduced and cast in the form of a
simple integral that gives the correction of the Helmholtz
free energy function from the measured or modeled lowering
of ionization potentials. This solution of the inverse problem
apparently removes one of the main shortcomings of average
ion models where it now provides a means of constructing
consistent thermodynamic functions either analytically or
numerically.
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